
Renormalisation equations for the two-dimensional Coulomb gas: inclusion of the single-

particle charge distribution and comparison with Monte Carlo simulations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 2345

(http://iopscience.iop.org/0953-8984/2/10/002)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 11/05/2010 at 05:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/10
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 2345-2354. Printed in the UK 
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gas: inclusion of the single-particle charge distribution and 
comparison with Monte Carlo simulations 

Vittorio Cataudella, Petter Minnhagen and Hans Weber 
Department of Theoretical Physics, Umei University, 901 87 Umel, Sweden 

Received 6 September 1989 

Abstract. A set of self-consistent equations for the high-temperature phase of the two- 
dimensional Coulomb gas is solved numerically. These equations explicitly include the 
charge distribution of a single particle. Comparisons are made with Monte Carlo simula- 
tions as well as with the ‘point-charge’-limit of the equations. The results are discussed in 
the context of type I1 superconducting films. 

1. Introduction 

The two-dimensional Coulomb gas is the prototype for a system undergoing a 
Kosterlitz-Thouless transition. Another interesting aspect of this model is that it 
describes vortex fluctuations for superfluid and superconducting films and, in this 
respect, is directly accessible to experiments [l]. 

Two methods have so far been used in order to obtain information on the Coulomb 
gas model; one is through solving renormalisation type equations and the other is 
through Monte Carlo simulations [l]. In the present paper we investigate a particular 
set of renormalisation equations for the Coulomb gas [2,3,4] and compare the result 
with Monte Carlo simulations. In earlier work on these renormalisation equations the 
point charge limit of the equations was studied [2,3,4]. This means that the charge 
distribution of a single particle was not explicitly taken into account. The point charge 
limit may be expected to give the general gross properties of the model [3]. In the 
present investigation we extend the earlier work and include the single-particle charge 
distribution. 

In the case of vortex fluctuations for superfluid and superconducting films a vortex 
corresponds to a particular Coulomb gas single-particle charge distribution [l, 51. A 
specific description which takes this into account on the level of a phenomenological 
Ginzburg-Landau theory is the Ginzburg-Landau Coulomb gas model [l, 51. Monte 
Carlo simulations indicate that this model gives a good description of the resistive tail 
for type I1 superconducting films [l, 61. The explicit shape of the single-particle charge 
distribution plays a crucial role in establishing this agreement [6]. The fact that, in 
this context, the single-particle charge distribution is an essential part of the physics is 
one of the motivations for the present study. We have concentrated our study on the 
high-temperature phase of the Coulomb gas because it is in this regime that we are 
able to perform Monte Carlo simulations. 
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A description of the Coulomb gas as well as of the approximation scheme which is 
the starting point of the present paper are contained in [3] and will not be repeated 
here. Reference [3] will in the following be referred to as paper I. 

In section 2 we introduce some notation and describe the basic equations. The 
solutions including the single-particle charge distribution are compared to the corre- 
sponding point charge limit solution in section 3. A comparison with Monte Carlo 
simulations are given in section 4, while section 5 contains some concluding remarks. 

2. The basic equations 

The two-dimensional Coulomb gas consists of particles which have positive or negative 
charge s = +1, where the charge of each particle is distributed accordingly to a 
single-particle charge distribution f ( r ) .  The interaction between two charges s2 U ( r )  is 

n 

U ( r )  = J dr’f(r’)V(lr - r’l) 

where V ( r )  is defined by the Poisson equation 

V2V(r )  = -27rf(r) ( 2 )  

In the point charge limit c f ( r )  + S ( r ) )  equations (1) and (2), in two dimensions, 
give U ( r )  - -In r . The Coulomb gas model is defined by the partition function Z 
corresponding to a grand canonical ensemble 

“ O 1  1 
Z = [ -1 1 dr, . . .dr, exp(-H,/T) 

N =O ( N / 2 ) !  

where 

H - 1 ~ S ~ S ~ [ U ( ~ ~ ~ - ~ ~ / ) - U ( O ) ] - N N ~ .  
N - 2 , .  

+I 

(3) 

(4) 

Here p is the chemical interaction, A is the phase space division, N is the number of 
particles in a configuration, T is the temperature, the index i numerates the particles 
and si = f l  is the charge of particle i. The system is neutral so that there are equally 
many positive and negative particles in each configuration. For fixed single-particle 
function f ( r )  and phase space division A, the thermodynamic properties of this model 
is a function of the chemical interaction p and the temperature T .  (Our unit system is 
chosen such that k, = 1 and s2 = 1). 

Our aim is to study the high-temperature phase of this system with special emphasis 
on the effect of the single-particle charge distribution. The approximation scheme, which 
we will use, has been developed in paper I and we refer to this paper for details. Here 
we will only sketch the general approach and describe the basic equations. 

The fundamental idea is to obtain an equation for the linearly screened interaction, 
U,(r ) .  From the linearly screened interaction we obtain two key quantities characterising 
the system i.e. the screening length I and the dielectric constant E , .  These quantities 
are related to the small k-limit of the linearly screened interaction by 

1 271 
E ,  k2 + Oj,(k) = - ~ k + 0. (5 )  
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The screening length A is infinite in the low-temperature phase and finite in the 
high-temperature phase [l]. Furthermore the quantity F , T A - ~ / ~ ~  gives an estimate of 
the density of free charges, n,, present in the high-temperature phase [l]. The density of 
free charges is through the Bardeen-Stephen formula [7] directly related to the resistive 
tail of superconducting type I1 films [l]. 

By using standard linear response theory we can write V,(r)  in terms of the inverse 
dielectric function, or, equivalently, in terms of the density4ensity correlation function 
g ( r )  = ( W r ) A n ( O ) )  

U, (r )  = - s dr’f(1r - r’l) s dr” €-‘(Id - r”l) s dr”’ In((r” - r’”I)f(r”’) (6)  

where 

c-’(lr’ - r”1) = 6(lr - r”I) + p dr, ln(lr’ - rO( ) (An(ro )An(r” ) )  (7) s 
in which An is the charge density 

p in equation (7) is equal to 1/T.  
It was shown in paper I that it is possible to expand the densitydensity correlation 

function g ( r )  in terms of the interaction V,(r) .  This leads to a systematic approximation 
scheme for U,( r )  (see paper I for details). To lowest order in this approximation scheme 
we obtain 

2 
g (r , )  = --e 4z -pUI(O)  1 dr” [F(lr ,  - r”1) - F(r , ) ]  sinh[pU,(r”)] (9) A2 

where 

F ( r )  = dr’f(r’)f(lr - r’l) s 
and we have, following the convention, introduced the fugacity variable z = exp(Pp) 
instead of the chemical potential ,U . 

Equations (6), (7) and (9) together constitute a non-linear integral equation. This 
is the basic equation of the present paper. 

In principle, it is possible to improve the approximation by including further terms 
in the expansion for g(r , )  but, unfortunately, the complexity of the equation makes them 
intractable. In order to estimate the contribution from the next order of approximation, 
we have instead inserted the solution of lowest order equations into the next order 
equations which means that we in this estimate sacrifice the full self-consistency of the 
solution (see appendix and paper I). 
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3. Comparison with the point charge case 

In the present investigation we have chosen the single-particle charge distribution 

We made this choice for simplicity and in view of the fact that Monte Carlo simula- 
tions [6] suggest a small sensitivity to the more detailed shape. The constant b may be 
determined so as to obtain the best agreement with some explicit physical realisation. 
For example, b = 25 corresponds to the shape calculated from the Ginzburg-Landau 
equations where 5 is the Ginzburg-Landau coherence length [5]. (This last result 
is obtained by minimising the Ginzburg-Landau equations with b as a variational 
parameter.) 

With f ( r )  given by equation (11) we obtain by combining with equations (6)  and 
(9) 

to 

U,@) = - ( s ) 2 f i e - B ” 1 ( o )  dr’L(r,r’)sinh(fiU,(r’)) 

where 
tc 

L(r, r ’ )  = r’ dr” r ” p ( r ,  1”) l,: dr”’ Ko(r”, r”’)[F(r”’,  r’) - 2xF(r”’)] 

and 

b2F(r, r’) = exp[(r2 + r’ 2)/2b2]Zo(rr’/b2) (15) 

2nb2F(r)  = exp(-r2/2b2) (16) 

Here lo(r) is the modified Bessel function of the first kind and we have introduced the 
fugacity variable I = z b 2 / A .  

A main difference with the point charge case is that the kernel L(r,r’) ,  in the 
present case, is well defined everywhere. Or, in other words, the single-particle charge 
distribution removes the singularity at r = 0 of the interaction U,(r )  which is present 
in the point charge limit [3]. 

In order to solve equation (12) and establish the link between the interaction and 
the screening length E., we proceed in the following way. First we note that equation 
(12), for large r ,  becomes a linear equation which can be solved in a closed form. The 
solution of this linear equation Up can be found straightforwardly in the Fourier space, 
i.e. 

2nE (k) 
k2 + B@(k) 

oy(k)  = 

where B = (4nZ)/b2T exp(-fiU,(0)/2). Since both the complete self-consistent equation 
and the linear solution, in k-space, are of the general form [l]  

1 2n@(k) 
ea k2 + + A,k2” 

C,(k) = - 
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we get, by comparison with equation (17) 

B = caLP2 e ,  = (1 + b2/2L2)-'. (19) 

Equation (19) also provides a precise definition of A (compare equation (5 ) ) .  
By using (19) in equation (12), we finally get an equation for BU,(r)  for each fixed 

value of A, which we solve by standard numerical means. From these solutions and by 
aid of the relation 

m 

T = -n2 r 3 g ( r )  dr 

we construct a family of curves in the (Z, T )  plane where each curve corresponds to a 
fixed value of i. Equation (20) reflects the fact that the inverse of the dielectric function 
in k-space at k = 0 must vanish in the high-temperature phase [l]. 

Figure 1. Comparison between the lowest order approximation (including the single-particle 
charge distribution) and the point charge limit of the same approximation [3]. The curves 
are trajectories for constant I / b  in the (Z, T )  plane. Full curves include the single-particle 
charge distribution and broken curves correspond to the point charge limit [3]. The upper 
and lower sets of curves correspond to I / b  = 1 and I / b  = 10, respectively. 

In figure 1 we compare the calculated curves (i.e. the curves in the (Z,7') plane for 
fixed A/b) to the corresponding ones for the point-charge case [3]. As seen in the figure 
there are no appreciable differences for large values of A/b and T (see the A/b = 10 
curves for T 2 0.2) while for smaller values of A/b the differences are quite large (see 
the A/b = 1 curves). This can be understood in the following way: A large value of 
Il/b and a high T means a small particle density of which only a small fraction are 
bound in neutral pairs [l]. Consequently, the particles are on the average far apart 
and do not probe each others single-particle distribution. Hence the point charge limit 
of the equations becomes a good approximation. A smaller value of A/b, on the other 
hand, means a larger particle density and the particles are closer on the average and 
will, because of this probe, each others charge distribution and as a consequence the 
point charge limit becomes inadequate. 

In the comparison given in figure 1 we have optimised the correspondence between 
the point charge limit and the solution in the present paper in the following way: The 
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small distance cut-off of the integrals in the point charge limit is ro so that the ‘point 
charge’ curves in figure 1 correspond to constant I / r o  [3]. Roughly speaking both ro 
for the point charge case and b for the single-particle disribution given by equation 
(1 1) corresponds to the size of a charge. We have chosen ro = b in the comparison. 
This choice ensures that the point charge solution and the one which includes the 
single-particle distribution given by equation (1 1) have the same ‘large T smallT-limit 
(A/b)-2 = 4nZ/T. This means that in this limit the curves in figure 1 for the two 
solutions will merge. 

The fact that the comparisons in figure 1 does not extend down to T = 0 is just 
a technical difficulty: our numerical solution of equation (12) becomes numerically 
instable for small T ,  presumably reflecting the existence of the low-temperature phase. 

4. Comparison with Monte Carlo simulations 

Another way of obtaining information on the two-dimensional Coulomb gas is through 
Monte Carlo simulations. A computer code which simulates the two-dimensional 
Coulomb gas with a single-particle charge distribution (like the one in equation (1 1)) 
has been developed earlier in [6] and we refer to this work for details. 

The object of the Monte Carlo simulations in [6] was to establish a link between 
the resistive tail for type I1 superconducting films and the Ginzburg-Landau Coulomb 
gas model [ 5 ] .  The key quantity in this context is or in other words, the 
first moment of the linearly screened interaction V, ( r )  (compare equation (5)). This 
quantity is through the Bardeen-Stephen formula directly related to the resistance of 
superconducting type I1 films [l]. A suggestive agreement between resistance data and 
the Ginzburg-Landau Coulomb gas model was found through this connection [6]. 

from the Monte Carlo 
simulations with the calculation of the same quantity from the lowest order equations 
and the (estimated) next order correction in our approximation scheme (see section 2 
and the appendix). 

In principle the Monte Carlo simulations correspond to including all orders in 
our approximation scheme. Thus a comparison of the Monte Carlo results with the 
results from the low order terms in our expansion tests the convergence and the 
validity of the expansion. However, one must also bear in mind that the Monte Carlo 
simulations by themselves are not completely exact. The reason for this is the following: 
The starting point for the Monte Carlo code developed in [6] is a mathematically 
exact formulation of the two-dimensional Coulomb gas with a single-particle charge 
distribution in terms of a non-local sine-Gordon field theory. The continuous field in 
this formulation is discretised and put on a lattice. The Monte Carlo simulations are 
by necessity performed on a lattice of finite size. Thus a possible source for deviations 
from the exact result can be associated with the finite lattice and the representation 
of the single-particle charge distribution on a finite lattice. Nevertheless, the results 
of [6] suggest that the lattice sizes and the representation of the single-particle charge 
distribution used in the simulations give results close to the exact ones. Our present 
comparisons give an additional test of this because a good agreement between the 
approximation scheme and the Monte Carlo simulations for high temperatures (where 
the lowest order approximation becomes exact [3]) may be taken as a verification. 

The Monte Carlo simulation results in the present paper correspond to the lattice 
size 16 x 16 with periodic boundary conditions. The single-particle charge distribution 

In the present section we will compare the quantity 
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was represented as in ( [ 6 ] )  by five squares where the total charge over the central 
square was chosen as po = 5/12. These choices were in ( [6 ] )  found to be close to 
optimal and we refer the reader to this previous work for further details. The choices 
made correspond to the ratio b / a  = 0.83 where b is the extent of the single-particle 
distribution given by equation (1 1) and a is the lattice distance for the lattice discretising 
the continuous field in the sine-Gordon formulation. 

0 ‘  I I 1 1 I 
0 0.4 0.8 1.2 1.6 2 

T 

Figure 2. Comparison between the lowest order approximation (including the single- 
particle charge distribution) and Monte Carlo simulations. The full curves are trajectories 
for constant i / b  in the (3, T )  plane obtained from the lowest order approximation. From 
top to bottom they correspond to (A/b)2 = 0.1, 1 and 10. The asterisks, full circles, and 
open circles are obtained from Monte Carlo simulations and should be compared to the 
(A/b)’ = 0.1, 1 and 10 curves, respectively. The broken lines are just a guide to the eye. 

The comparisons are shown in figures 2 and 3. The full curves in figure 2 are 
‘constant I/b’ curves in the (2, T )  plane obtained from the lowest order approximation 
(given by equation (12)). From top to bottom in the figure they correspond to 
(A/b)2 = 0.1, 1 and 10, respectively. The asterisks, full circles and open circles are 
results from the Monte Carlo simulations. The asterisks, full circles, and open circles 
should be compared to the (A/b)2 = 0.1, 1 and 10 curves, respectively. We are comparing 
the results for the quantity c,(A/b)-2.  This means that an open circle corresponds to the 
same value of ~ , ( n / b ) - ~  as the point vertically below on the lowest order (A/b)2 = 10 
curve (and similarly for the full circles and asterisks). 

As seen in figure 2 the Monte Carlo simulations are for T 2 1 in excellent 
agreement with the lowest order calculation. This is in accord with the theoretical 
expectations because the lowest order calculation becomes exact in the limit of high 
temperatures [3]. As discussed in the previous section, the difference between the 
I / b  = 1 curves in figure 1 is an effect of the single-particle charge distribution; the 
particles are so close that they probe each others single-particle distribution. Hence 
the agreement for T 2 1 between the ( I / b ) 2  = 1 curve and the corresponding Monte 
Carlo results shown in figure 2 verifies that the lattice size and the representation of 
the single-particle charge distribution used in the Monte Carlo simulations are indeed 
quite adequate. This conclusion is further enforced by the agreement between the 
(A/b)2 = 0.1 curve and the corresponding Monte Carlo results because the particles 
are on the average even closer in this case. It follows that the discrepancy between the 
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lowest order calculation and the Monte Carlo simulations for T < 1 to large extent 
can be attributed to the neglect of the higher order terms in our expansion. It then also 
follows that the higher order terms becomes more important for smaller temperatures. 
Nevertheless, the qualitative features are well represented already by the lowest order 
calculation. The only qualitative difference is the crossing of the curves from the lowest 
order calculation occuring at the smallest temperatures. As discussed in paper I such 
crossings reflect the mean field character of the lowest order calculation and signals a 
phase transition. The signal of such a phase transition for the exact solution would 
be the merging at small temperatures of curves corresponding to a some continuous 
range of %/b  values. However, the convergence and the resolution of our Monte Carlo 
program are not high enough to resolve such a feature. 

0 
0.1 0.3 0.5 0.7 0.9 

T 

Figure 3. Comparison of the I / b  = 1 trajectory in the (Z, T )  plane obtained from the 
lowest order approximation (including the single-particle charge distribution) (full curve), 
the (estimated) next order (dotted curve) contribution, and Monte Carlo simulation (full 
circles). The broken lines are just a guide to the eye. 

Figure 3 shows a comparison between the A/b = 1 curve from the lowest order 
calculation (full curve), the A/b = 1 curve from the calculation including the (estimated) 
next order correction (broken curve, see the appendix for a description of the correction 
term), and the Monte Carlo simulations (full circles). As expected the next order 
correction comes much closer to the Monte Carlo results. However, the remaining 
discrepancy suggests that one would have to include a few more orders in our expansion 
in order to get a good approximation of the exact result for T < 1. Such a calculation 
would be quite intractable. 

The connection between the ‘universal resistance’ curve for superconducting type I1 
films [I] and the Coulomb gas quantity €,A-* was in [6] established for the Coulomb 
gas temperature interval 0.3 I T I 0.6 and 0.1 I ~ , ( n / b ) - ~  I 1. As is apparent in 
figure 3 the higher order terms are in this temperature range quite important. This 
suggests that it would in fact be very difficult to calculate the ‘universal resistance’ 
curve [I] without resorting to Monte Carlo simulation. 

5. Concluding remarks 

In the present paper we have investigated the importance of the single-particle charge 



Renormalisation equations for  the 2~ Coulomb gas 2353 

distribution for the properties of the two-dimensional Coulomb gas. 
It was explicitly demonstrated that, when the particles are close enough on the 

average, the single-particle charge distribution is an essential part of the physics. This 
conclusion carries over to the the description of the resistive tail for superconducting 
type I1 films; the shape of the universal resistance curve [l] contains information of 
the vortex core. Or, in other words, a point charge type description is not adequate 
for the universal resistance curve. In principle, a point charge description would 
be appropriate close enough to the critical temperature for an infinite sample [l]. 
However, it is not clear whether this critical region can ever be resolved in practice 
due to finite size effects and other experimental limitations [l]. The fact that the 
single-particle charge distribution has to be included in order to calculate the universal 
resistance curve was reached in earlier Monte Carlo simulation work [6]. The present 
investigation corroborates this conclusion. It also verifies that the approximation of 
the single-particle charge distribution used in the earlier Monte Carlo simulation work 
is indeed adequate. 

It was also demonstrated by comparing to Monte Carlo results that the key 
quantity in the connection to superconducting films, e,(A/b)-2,  can be calculated from 
a systematic approximation scheme developed earlier [3]. Already the lowest order of 
this approximation scheme gave all the essential qualitative features. However, we also 
concluded that the calculation of the universal resistance curve would require a few 
more orders in this expansion scheme. Such a calculation was deemed to be extremely 
cumbersome. This suggests that it would be very hard to calculate the universal 
resistance curve without resorting to Monte Carlo simulations. This reflects the fact 
that the universal resistance curve does not correspond to any critical properties of the 
two-dimensional Coulomb gas. 

The limitations of the numerical convergence of the present calculation prevented 
an investigation of the phase transition lines for the two-dimensional Coulomb gas. 
However, the present calculations suggest that the actual location of the phase transition 
lines in the (2 ,  T )  plane will be quite sensitive to the shape of the single-particle charge 
distribution. 
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Appendix 

Equation (9) is the lowest order approximation of the charge-density correlation 
function g ( r )  in terms of the linearly screened interaction U,(r ) .  Including the next 
order correction in this expansion gives (see paper I) 

dr‘ [F(lr - r’l) - F(r)](exp[-/?(Ul(r’) + ?4++(r’))] 
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where 

and zeff = Fexp[-flU,(0)/2]. 
The self-consistent solution of the equation set given by equations (6), (7), (Al), 

and (A2) gives U,  to the next order. This next order U,@)  reduces to the lowest order 
solution for large r (see paper I). This means that the ‘constant A/b’ curves in the (2, T )  
plane can again be calculated by aid of equations (19) and (20). However, it turns out 
to be numerically cumbersome to solve equations (6), (7), (Al), and (A2) . 

As an alternative, we have in the present investigation estimated the next order 
correction to the lowest order approximation by inserting the lowest order solution 
directly into equations (AI) and (A2). We then replace the true next order g ( r )  (corre- 
sponding to full self-consistency) by the g ( r )  obtained in this way. The corresponding 
U, is then obtained by aid of equations (6) and (7). The lack of self-consistency 
causes this estimate to break down for temperatures that are too low, but for higher 
temperatures it ought to be a good estimate of the next order correction. 
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